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ABSTRACT

A theoretical model has been developed to predict acoustic .. -

radiation from a submerged, finite-cylindrical shell internally

stiffened by ring frames and with flat, movable end caps. Iterative

techniques are developed to solve the associated fluid-structure

coupled systems over a moderate range of frequencies which encompasses

several fluid-loaded resonances. We demonstrate that such techniques

generate essentially the exact solution in a reasonably small number S

of iterations. Comparison of computational costs to those for the

exact result shows iteration to be economically advantageous for all

frequencies considered.

.0

S

Acknowledgements: The author wishes to thank his colleagues,

J. M. Garrelick and J.E. Cole, for invaluable

discussions during the course of the investigation.

. - -" .'.~..



CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

I. INTRODUCTION: THE MODEL IN CONTEXT

A. Statement of the Problem

The prediction of acoustic radiation from a general submerged

body requires, as an intermediate step, that two coupled systems of equa- " -

tions be solved simultaneously for the surface response and radiation 0

loading. One of the systems describes the in-vacuo dynamics of the

structure and so appears driven by unknown fluid pressures as well as

by known applied forces; the second describes the body-surface structure-

less dynamics of the fluid and in exact formulations is usually provided

by the Hel-,holtz integral, which also later yields far-field pressures

once its integrand has been fully determined. While the generation of the

latter fluid system may sometimes be expected to dominate computational costs,

a non-negligible part of the total expense must always be earmarked to the .

coupled systems' solution process itself. The fluid system is again

mostly to blame since its effective contribution to the total impedance

is a fully populated matrix in contrast to that of the in-vacuo structure,

which is typically heavily banded and therefore relatively easy to invert. P

A major objective here is the development and implementation of cost-

effective iterative methods to solve fluid-structure systems which arise

in the analysis of a finite, frame-stiffened cylindrical shell with movable

end caps. The project is in part a follow-up to that of Ref. 1, where we

established that similar iterative techniques worked for the force-driven

spherical shell. The spherical structure, however, is a separable geometry

which besides is modally compatible with its external medium. The iterations

performed where thus applied to scalar quantities and, though generally

successful, left unanswered the fundamental question regarding feasibility

of application to general nonseparable cases with fully populated matrices.

It will be recalled that when applicable, iteration methods for the solution

of a single linear system traditionally involve an order of magnitude fewer

operations than do exact methods.

7. .- °.... A.
,. . -.
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A second objective is to apply the model to an actual structure

and to compare exact far-field predictions to existing measurements. B

Summarizing the work, Chapter II contains the development of modal

structural and fluid systems for a submerged finite cylinder, and Chapter III

that of the several iteration algorithms intended to solve them. In Chapter IV

the theory is applied to an actual situation of interest and exact and iterated

solutions are discussed and compared to measurement.

B. Background

The following is abrief review of recent developments in the area S

of vibration of cylindrical structures, framed or unframed, submerged in a

heavy fluid which at times may substantially change the character of the in-

vacuo response. The use of iteration in past studies is also discussed briefly.

B.1 Treatment of the External Fluid Space

B.l.a "Exact" Models

As earlier stated, rigorous treatments of the

external fluid have tended to rely on the Helmholtz integral, the alternative

being a finite-element or finite-difference partitioning of a chosen fluid

volume enclosing the body and the enforcement of a radiation condition on the

outmost elements. The Helmholtz integral has the advantage that it yields

an integral equation which requires pressure and displacements values only

on the body surface -- the values which completely determine an interaction

problem.

A major disadvantage however, is that by itself the Helmholtz integral
I

cannot be solved at the eigenfrequencies of its kernel, so that fluid im-
2

pedances are not always immediately available and therefore neither are values

of the fluid pressure which would accompany a specified boundary motion.

This disadvantage is only apparent,however, since the fluid eigenproblem I
is removed upon coupling to an interior problem posed for the body cavity

which complements the entire medium, and techniques such as those discussed

in Refs. 3,4 may be employed for a general impedance calculation; the

2

. . . . . . . .. . . . . • • -- .. . .
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methods of Refs. 5 and 6 achieve the same end by coupling the Helmholtz

integral to the related equation resulting from differentiation. More-

over, in an interaction problem this apparent disadvantage is entirely
7

fictitious since, as pointed out by Huang , fluid impedances need then

never be calculated as a bridging step. In effect, the fluid is then

automatically coupled to an "interior" structural system and the Helmholtz

eigenproblem does not come up.

Still, a number of useful and interesting studies have been ex-

clusively devoted to the calculation of fluid impedances for the cylin-

drical geometry, and thus to the mapping out of the radiation loading
8

over such structures. Chertock for example, has developed a general

computational scheme for obtaining solutions of the Helmholtz integral

equation corresponding to given or assumed velocity distributions. The

method is iterative and he observes that,while it converges easily for

low frequencies, higher frequencies demand certain modifications, e.g.,

averaging of two previous iterates for input in the current step. Slow

or nonconvergence of iterative techniques applied just to the fluid system

has been connected in Ref. 1 to the Helmholtz eigenfrequencies by recalling

the convergence constraints on the standard Neumann series for a Fredholm

9
equation

Sandman has investigated the finite but baffled cylinder 1, and the

finite unbaffled cylinder with zero prescribed motion at the two flat ends.I I

His objective was to determine modal radiation loading magnitudes corre-

sponding to prescribed modal motions, with results which could be layed

out over those for the classical infinite cylinder solution to determine 5
12 13,14

the effect of the finite ends. Similarly, Kozyrev and Shenderov

have calculated fluid impedances for a finite cylinder with rigid and soft

caps using a finite-difference approach; they applied Schenk's CHIEF3 method

at the Helmholtz eigenfrequencies. However, Patel's like use of CHIEF as

part of his analysis of scattering from elastic structures is unnecessary . .* .-

by the above argument since he ignores the fact that the in-vaauo structural

formulation represents interior-problem enough for the external fluid.

3

I
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The modal fluid model developed here is essentially an extension

of those by Sandman to include the effect of nonzero cap motion. Thus,

inversion of the fluid system derived in Chapter II would yield modal

impedances immediately suitable for comparison to those of Ref. 10.

Although such results were generated as part of the benchmark shake-

down of the present fluid model, for the sake of conciseness we do not

report them here.

B.l.b Asymptotic Models

Earlier we stated that the total cost for

solving the two coupled systems for a given arbitrary frequency is

sometimes dominated by the generation of the fluid system. Add to this

the need to generate a new fluid system for each new frequency, and the

incentive for a rational substitute for the Helmholtz equation formulation
16

becomes clear. Geers' Doubly-Asymptotic Approximation (DAA) requires

in effect that the fluid system be generatcd for only one frequency: the

zero frequency which yields the apparent mass matrix for the given geometry.

The method has been refined to give the exact fluid impedance not only at

the low and high frequency limits, but also at an additional midrange value

of choice.17 DAA has been applied in a number of studies 18 '1 '1 9 which

gauge its performance by comparing to exact, analytically available results.
20

In a more general application, Rantlet and DiMaggio have used DAA to model

radiation loading for transient response to shock of a finite cylindrical

shell for which the alternative would be the more expensive Helmholtz integral

formulation.

In Ref. 1 DAA was used as part of an iterative technique to compute

the exact structural response corresponding to an exact, Helmholtz-integral

fluid model. DAA's purpose was to stabilize iterations whose convergence

"ias otherwise either slow or impossible given the schemes deviied. Con-

vergence for the techniques here met with no such difficulties and a similar

recourse to DAA was therefore not necessary.

4

S.i .
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B.2 Interation Models for Finite Cylinders using "Exact"

Two- and Three-Dimensional Fluid Formulations S

Chen and Schweikert2 1 have applied a general finite-

element methodology to a cylindrical shell and have modeled the three-

dimensional fluid interface as a superposition of sources of strengths

unknown a priori. An internal stiffening structure was also considered.

In accordance with the earlier discussion here, they met with no matrix
22

inversion problems. Baron, et. al. used a finite-difference description

of a solid elastic cylinder by dividing it into bands and assuming a modal

expansion in the circumferential direction. The two cap surfaces were

similarly divided into concentric bands. The three-dimensional fluid was

modeled using the Helmholtz integral. The final coupled system was obtained

by equating the surface-normal stress and displacement fields to the ex-

ternal fluid pressure and particle displacement, respectively. A later

model which includes the possibility of an internal void is in fact a
23

fluid-loaded thick-shell theory for the finite cylinder. Later yet, an

orthotropic shell model was developed to simulate stiffening-frame effects,

and elastic end caps were incorporated.
2 4

25rihto'-2
Crighton's analysis of acoustic scattering by a finite cylindrical

bar not only models the fluid as two-dimensional, but has also adopted a

strip-theory, or locally-reacting, radiation approximation to eliminate

the cumbersome fluid loading integral. Such simplifications allowed him

to arrive at a simple and useful theoretical result for the ratio of res-

onant to nonresonant far-field levels.

rroughs 26 , and Cole 2 7 have also used two-dimensional fluid models S

in h__ lalyses of force-driven framed cylindrical shells. Both studies

were in go agreement with experimental data. Cole models each stiffening

frame as a ing of finite thickness and width, and calculates in-and out-

of-plane dispi.cements due to shell-reaction loads by 
means of Harari's s

equations.

p

5I
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The familiar far-field approximation for the radical in the exponent

is then applied,

2 -Zz2 + rcosa-zz
/l+r +2rcosat+(zz ~Rl 2 (II .A-23)

R

which may be further simplified to just R for the radical in the denominator

of Eq. II.A-22, which becomes

ikaR ikaR L/2a ak~/~
e f(1) (z) e In+l f dz sin L r(+/ 2 )ike /~

R nm RJ

-L/2a

Jdcacosna e iarRcsx(II.A-24)

The z integral is easily evaluated. For the ot integral one recognizes that

'TTS

n riFcosat
J n (C) ITfducosna e

0

so that finally

(1) _(i) n+l

f nm 2 J n(kasirep)

e imT/ sin fmffa/L-kacostPlL,/2a e-iMni/2 sin [(mita/T,+kacosip)T/2a1
_ fmia/L-kacosiP)- (mnra/L+kacos J}

(II.A-25)

Applying a similar reasoning, one finds that

t () (n, kasinj Jn (k asin,) +~Jinl (kasinpj

~imTT/2 sin Ifmira/L,-kacos~tiI,/2aI -imT/2 sin [[mila/L,+kacosiP L/2a]

(IT.A-26)

II3~
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ika pc E f(1) VM=l nm nm

+ l f(2)
m=l nm nm

+ ika pc f (3) VCL
n n

ik aR

e i (4) CL(II.A-21)
Rosn (4) c

n n

f(5) CR

+Lkfa pc f V
1n n

(6) CR

+f Pn

ikaR/R-
where we have analytically extracted out the free-field asymptotic factor e '-/R

(R nondimensiona])of the three dimensional pressure field. The factor multi-
ikaR

plying e /R on the right-hand-side of Eq. II.A-21 is the directivity

function for the vibrating shell with end caps as a complex radiator (the
(i) (6)

angles 4, ip are defined in Fig. II.1). Thus, the quantities f ...,f (-6
nm n . -

are functions of (r/R,z/R) (sin p, cos p) available analytically by approxi-

mating the integrals in Eq. II.A-7 resulting from substitution of Eqs.II.A-9a

through II.A-9f. Each of their contribution to the total field has a simple U
(1) (2)physical interpretation. For example, f ,) f represent modal monopolenm nm

and dipole contributions over the shell surface since respectively they .

(3)
appear multiplying Vnm and p nm Similarly, fn represents the directivity

contribution of a left cap monopole, and f(
4) that of a right cap dipole, 0

n
etc. The expressions given below clearly show all these features. To cal-

(1)
culate f (), one starts with its exact, near-field, form:

nm

ikaR )L/2a a
e f () (r,z) = - f dz sin -n(z+,/2a)

R nm 4 -- zf/L

-L/2a(II.A-22)

TTika/ +r2 -2rcosa+ (z-z) 2
.2(_)nf dccosna e

_2 -24+r +2rcos(x+(z-z)

is..-.5
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and

T = L/a iiraz jcosf(m-in)7r(l-az/L)J-cos(n-;)7r/2
3 2 T L rn-rnf

cos[f (rnii) 7T (l-az/L) 1-cos (n+i ) 7r/ 2
+ r~

+L/a cos;Taz sin (r-n-i) 7r (l-az/L) I -sin (rn-ffi) Tr/2

sin1(ni) 7r(l-az/L) 1-sin (n+fi) 7T/2 for m

(II.A-18b)
where again, here

7T
n

at () 2(1l) fcostePia 2 ~o
ai n 2Z f dconcexpik/2 (II.A-19a)%

22

a2 1 Z 2(-l) dcucosnca (l+cosct) ti-ika 2+z /l+ cosaJ
2n {22 3/ f ~ 3/2-

*2z lexpfia 2z l~oc}(IA1b

22

=2/(2+z)

2. Calculation of the Acoustic Field

Eq. II.A-7 is now used to calculate the acoustic far-field

pressure pf defined as (with ='rJ

Pf liin T cosn~p (r,z) li Er cosn~pp (r,z) (II.A-20)/f 2 +z2 _ 1ncO n R- n=0 n

17
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T L/a cos -a cos (m-n/2 m ( Z-) + sin ma
2 47rrn L L L

L/a m~az2miraz - 1 m

-sin mz cos(nir/2) [Cos L (lm
47rm L

+sin (ri/2) [rnTT(1 - 2a-z) sin 2miraz for m~ m

L L I

(II.A-17a)

L/a rnrraz cosmit sin(m- ifT/2-sin(mrnr)za/L
and T -c- C os (- )[

2 2Tn L 2-f

- sin (m+rn) ir/2-sin (rn+r) Trza/L)

msin [COS o(rn-ffi)ff/
2-cos (m-ffi) itza/L

2

SCOS (m+in)ffm2cosi i)tza/L)

+L/a si mitza co''ff2' [cos(m-;)ff/2-cos(m-)-jza/L

+cos (rnri) nr/2cos (m+rn) irza/L1

+ sin(m+;)ff/2-sin(m+n)irza/L fo~rn m ff

(II.A-17b)

T L/a miraz 2rnaz
3 -ifl L -

L/a mrraz f 2az .2rnrraz

+- Cos- ( -L mT+ sin -L for m m r (II.A-18a)

16
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the degree of computation is further reduced. Finally, all entries for

which m+m is not an even integer may be shown to be identically zero. It S
2

turns out therefore, that instead of M triple integrals for the MxM sub-

matrix, we actually have only M/2-(M/2+I) double integrals for M even, or -.-

2
(M+l) /4 double integrals for M odd. Thus, for example, if M=30 the

number of double integrals needed for the MxM submatrix becomes 15(15+1)=240 0

(not 900). If M=31, then (31+1)2/4 = 256 double integrals are required.
2

For large M therefore, roughly M /4 double integrals are needed to generate

most of the fluid elements by the present modal method. since finite dif-
2 2

ferences would require M (or perhaps M /2 due to reciprocity), the present

method represents a net savings for this part of the calculation. However,

the matrix entries for the bottom two rows and rightmost two columns of [C]

and [D], require the evaluation of roughly 3M triple integrals for n=0 or

2M for n > 1 by the modal method and the same number of double integrals by S

finite differences, so that, calling N the number of mesh points in the out-

most of our triple integrals, it follows that both techniques are roughly
2

equivalent in cost when 3MN = 3/4M

The double-integral versions of C D turn out to be:-

L/2a

[(1) 2 m+{n d 2 2
n = 2--[i--) dz {(T+T )[a I (z)]+T [a I (z+L/2a)l

nm 13 2n 2 2n

(II.A-15a)

(1) ika m L/2a

D [=- l-a i-(-l) ; dz a(T +T [aln(Z)]+T [a I l (z+L/2a)]}
nmm 2 7T f f( 1 +T3[1 1 ()] 2  lnS

0 (II.A-15b)

where the quantities T, T2 , T3 are functions of m,mh and z:

T 1  -a[l-(-l) m  sin m-aZ + !a cos -raz for m m (II.A-16a) S
1 4irm L 4 L

and

L/a s inaz (-) -cos(m-m)ir/2 (-1) -cos(m+ nlr/2
T =-sin rn-r +m-ii

1 2 m- + m+m -

n/a minaz _sin (m-m)/2 sin (m+i) T/2

- - cos snm-m/ - mm for m n; (II.A-16b)

15
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C C
L R

For n > 1 the present model has V = V = 0; so that the right side of

Eq. II.A-13 becomes then 0

D(1) D (1) D
nll n12 nlM nm=l

D(1) D (1) V
n21 ... n2M nm=2

iD1 De1)

nMl ... nMM nm=M

(II.A-14)

(2) (2) (2)
D D D
nm-l nm=2 nm-M

(2) (2) M+1 (2)
nm=l1 nm=2 (-)DnM

where the last two columns have been deleted from the [D] matrix multiplying
short

fV}, which has been shortened accordingly. If {V} above were known so

that the above product could be performed, thus yielding a M+2-element vector,

the system governing the {p} vector would still have rank M+2; its solution

would give the shell modal fluid loading pn; 'P plus the fluid cap
CL CR

pressures p , . From the acoustic viewpoint, these cap pressures, whethern .n-.-.

or not there is cap motion, represent the modal strength of radiating cap di-. -"-

poles.

All constants in both [C] and (D] matrices require the evaluation of 0

a triple integral. Thus, the present modal formulation initially does not

appear economically advantageous compared to a similar finite-element or

finite difference calculation, e.g., that in Ref. 22 where only double in-

tegrals are required. However, we now show that the bulk of the matrix •

elements, namely those composing the upper left MxM submatrix in both [C] -

and (D] matrices which represent the coupling of m,mi modes on the cylindrical

part of the surface, may be recast in terms of double integrals. Moreover, '.."" -

(1) (1)
these submatrices are symmetric, e.g. in Eq. II.A-II C ( )  C (I , so thatnmm nmm •

14
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M
Finally, if the modal sum Z is everywhere truncated to E M being

m= 1 m=l

an integer of sufficient size, and advantage is taken of certain symmetry
(3) m+l

relations between some of the constants (e.g., it turns out that D =(-l)
(2) (3)= lm+l. (2) n

D ;C (-.C ), the resulting set of iEluid equations may then be
nm nm nm
cast in the following matrix form:

C() L/2a+C C) ... C() C (2 C(2 ) p
ll n 22 n2M nm--2 nmrr- nm--l

C(1) ...a+C/1 a C (1) C 2 - C (2)
Cnml n2nM nrr- nm-- nm=2nM2

C . . C 1/ I

(2) (1)(2) M+1-(2) -
C 1 - ... (L2+ C - l C/ p-

n-ln-2nrM nmMnM nm=

nll n1 nlM ---- n---------

D (2) D 1 ()D(2) -D(2) PC
nm~l n22 ** nM 1/-2 (3)- Lm=

nI nM mM I- nm=

--------------------------------------------- -------- ------------- -----
C

-(2) -(2) Ml(2) -(3 54 R
Cnmrrl Cnm=2 . () nmM nC 1/ p=

D(1) -D (2) ... M D ( )54)5 3 R

Dnll n2 nM- nm ~ n L nm=0

I IA 13
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L/2a L/2a

() ika I'mr iTa-
D(1 i dzsin T (z+L/2a) dzsin (z+L/2a) [aIln (l;r=l)]

-L/2a -L/2a

L/2a L/2a
(1) 2mT(+ / a) d.i ia "2'""

C) i dzsin '- z+L/2a) mwa (z+n/2a) I l;r=l)]
.nim 27rf L f L 2n 1

-L/2a -L/2a

L/2a 1

D (2) ika f-dzsin m (z+L/2a) drr[aI (;r=l)
nm 2Tr jL ' 3n 2

-L/2a 0

L/2a 1C(2) I ~ 314

()= dzsin -a (z+L/2a).(z+L/2a) drr[a ( 2r=l)]
nm 27Tf L J 4n 2'

-L/2a 0

-L/2a 0•..L/2a 1

(3) ika tom a -- -+" ""nmD - dzsin M'T (z+L/2a) drr[aI n ;r=l)] .l.

-L/2a 0 " ""-

L/2a 1., ..

Cnm 2 dzsin - - (z+L/2a)"(z-L/2a) drr[ 3 3;r=l)] (II.A-12) P

-L/2a 0

The constants C (I ) and D (I ) have been initially defined in terms of Cauchy-
nmm nmm

Principal Value integrals which omit the point z=z for which i=1 and for which p

and a 2n are therefore infinite. (Actually, it may be shown that the

resulting singularity is of the log type, and thus integrable so that the

Cauchy-Principal Value designation may be lifted. Such a result is consistent

with the discussion in Ref. 34.)

This procedure may be repeated for field points on the left and right

caps. For the point on the left cap, for example, the left-hand side of
CL

Eq. II.A-7 becomes pn and the second integral on the right-hand side must now

be written as S

1

Pt

i.e., we return to Eq. II.A-7 and let z=-L/2a ;multiply then by rdr and

integrate both sides of Eq. II.A-7 from 0 to 1. Constants similar to those in

Eqs. II.A-ll and II.A-12 may be defined; these are given in Appendix II.A.(l). A

similar calculation is performed for the right cap.

12"
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C
L

P n(r, -L/2a) =Pn (-L/2a) =p~ n a constant function of end-cap (II.A-9c)
* radial coordinate r

C R

p (r,L/2a) =P (L/2a) p n a constant function of end-cap (II.A-9d)
radial coordinate r

0 L Vn aconstant function of end cap radialc o r i n t f o r =
V n(r,-L/2a) =(II.A-9e)

n Ofor n> 1

CR
V , a constant function of end cap radial

(rL ~coordinate for n=O (I.-f
n

0 for n > 1

Similar expansions may be used for the field pressure p (r,z) on the left-

hand side of Eq. II.A-7 as the point approaches the cylinder surface; e.g., for

a field potnt (r,z) now on the cylindrical shell surface (1,z) we have

* / L/2a0
m0l {i1c. -~ ;Tr

Ei~ P snnm T (z+L/2a) =kpc .. sin - (z+L/2a)
M-1 n~ L n~n 2 L/2fa

/ L/2aa
/ -L/2a 2

[aIm ( r1;r + p- dz sin (z+L,/2a) [ a I ( rl

+ (II .A-lO)

-2
where now E, 2/t2+Cz-z) 1, and 2' E3 are similarly evaluated for r=l.

Multiplying the above by sinmrr ./L(z+L/2a) and integrating from -L/2a to

+L/2a with respect to z yields

(1) (1 (2) CL
L/2a p =PC D .V~. C. C p ~+ cD V

nm mnll nmm nm mjl nmmf nmf rnm n

C C C
C(2) PL +pD(3) VL C(3) p

* 1m n rum n nm n

where
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L/ 2a

p (r, z) =-C dztikapicV (1,z)aI (r,l,zpz)]
n471 f n In

-L/2a

- 2-+pn (l,z)(a I 2n(r,1,z,z)1}

4Tf drrfikapcV n(r,-L/2a)[a1 3 n rrz-/a](IA

0

+(z+L/2a)p (-r,-L/2a) [a I (r,r,z,-L/2a)Jn 4n

1

TI -f- drrfikapcV n(r,L/2a)a 5an (r,r,z,L/2a)]

3 -

-(z-L/2a)p (r,L/2a)[a I (r,r,z,L/2a)1}
ni 6n

where,for example,

IT ika/l+r 2+(z-z) 2l/+C 1 coscx

alin (r,l,z,z) - 2 - dcosce(II.A-8)

l+r +(z-z)2 0 vrl+E1cosa

with

= 2r

1 2 -2
1+r +(z-Z)

The rest of the expressions for a 2 *1.2n a 3I 6 are given in Appendix II.A.

In Eqs. II.A-7 and II.A-8, all spatial variables have been normalized by the

cylinder radius a. V (1,z) and p (1,z) stand for the normal velocity and pressuren n

on the cylindrical part of the boundary; V ( ,.-L/2a) and p (r,-L/2a) stand for
n n

corresponding quantities at the left cap); and V n(r,L/2a) and pn (r,L/2a) stand for

those at the right cap. We now assume the following expansions:

V (l,z) E V sin ma(z+L/2a) (II .A-9a)
n m1 rum L

P(1, Z) Fp sin - (z-fL/2a) I.-b
ni m=1 rim L

10
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A. The Fluid System

1. Radiation Loading System

In a fluid the Helmholtz integral relates the velocity potential P

at a field point to boundary values of potential and velocity, both initially . -

* unknown in an interaction problem.

f n
S~=ffS -F --(I..-

where e = 1,2 for points in the fluid and on the boundary, respectively. G is

the free-field Green's function,

ikR
e .

G e (II.A-2)

where k is the acoustic wavenumber w/c, and R, the distance between field point

(r, ,z) and boundary point (r,a,z), is given by

S2+-2 -2

R /r +r -2rrcos(a-fl+(z-z) (II.A-3)

so that

I aG
+ -_ for points on the right cap (+) and left (-).

-- = ~~(II.A-4) .-. ".

n aG for points on the curved, longitudinal part of the

ar cylindrical surface.

The r,4,z coordinate system is shown in Fig. II.1; (r,a,z) correspond to

running values of these variables in the integration.

The fluid pressure anywhere may be found from (P from the unsteady linearized

Bernoulli equation

p - P = iWpD (II.A-5)

If one writes p in terms of circumferential n-modes as

(1) (2)p(r, ,z) E = p (r,z)cosn + p (rz)sinn (II.A-6)
p~r, ,z) (20)n,-

it may be shown that both p(1) and pn(2) satisfy the following form of the . -n

Helmholtz integral:

t9
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II. FLUID AND STRUCTURAL MODELS FOR A FINITE, FRAME-STIFFENED CYLINDRICAL

0 SHELL WITH END CAPS

As earlier pointed out, the finite cylindrical geometry is nonseparable.

Because of this, the modal form chosen to describe pressure and displacement

variations along the axial, or curved, part of the surface will inevitably be

nonorthogonal to that chosen to describe these same variables over the cap

surfaces. The result is an elaborate set of linear equations which for both

structure and fluid couples one set of modes to the other.

• Here we assume that the simply-supported set of sinmfrz/L functions

adequately describes fluid and structural quantities over the longitudinal

part of the geometry--an assumption of course not met by displacements near

the ends of a freely suspended, or neutrally bouyant, cylinder but which

( nevertheless has proven successful in predicting acoustic radiation from p
27

such structures.

Also, because the analysis is here ultimately applied to a case for which

the cylinder radius is much smaller than the shortest acoustic wavelength

• considered, only the radially uniform mode is used for the caps; i.e., cap P

displacements and pressures are given by the product of the "unit" mode and

the constants which denote their values. Should future need dictate a more

complete cap description, an expansion such as that of Ref. 20, Eq. 62 may be

used.

In Section II.A.I the Helmholtz integral is used to develop a radiation

loading model for the finite-cylindrical geometry. In Section II.A.2 the

fluid system so generated is approximated analytically for an arbitrary far-

field point. The radiated pressure thus appears as a function of surface

pressure and displacement, both unknown at this stage in the analysis.

Section II.B contains the analysis for the dynamics of a submerged frame-

stiffened shell with end caps. The otherwise arbitrary external drive is

assumed axisymmetric in the circumferential direction. Together with the fluid

model of Section II.A, the structural system developed here defines the fluid-

structure interaction problem.

-if'.
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Computational Fluid Dynamics almost by definition deals with very

large linear systems, and workers in that field have often resorted to

iterative techniques as the only practical means of solution. An example

of a predictor-corrector type of CFD application of iteration arises in

the time-domain description of the fluid medium bounded by a complex

structure in impulsive motion, a calculation which normally requires the

development of the solution over a large-volume grid of mesh points at

each time step, and the associated enforcement of continuity of particle

velocity at each instant over the contact surface. Chang and Wang 3 1 have

• used an iterative scheme in their transient boundary condition calculation.

At the end of each time step the estimated fluid pressure was used to cal-

culate structural displacements, which then generally did not agree with

those for the fluid particles at the interface. These were then corrected

and the fluid medium recalculated to yield the new radiation load vector,

etc.

32
Belytschko has discussed the role of iteration in the implicit

time integration of system equations for the general transient fluid-

structure interaction problem. Whitlow and Harris have done essentially

the same for unsteady transonic flow in their discussion of similar numer-

ical techniques commonly used in that field. Transonic flow over an oscil-

* lating airfoil is governed by a nonlinear potential equation which gives rise

to shocks in the gas medium; since the positions of these vary with time,

a fine local mesh is usually required.

As will be discussed in Chapter III, in developing some of the

iteration techniques here we have emphasized the convergence role of

system subpartitioning rather than the application of methods known to

accelerate convergence.

7
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The present structural model is essentially this same model with

rational simplifications to reduce tht- number of degrees of freedom

matched between shell and frames (here only radial and circumferential

displacements are used whereas Cole also matches axial displacements and

out-of-plane rotations). Fundamental differences between the model here

and that in Ref. 27 are therefore really confined to just the fluid-loading

system, for which the present study may be viewed as providing the three-

dimensional extension.

* B.3 Fluid-Structure Interation Studies using Iteration Models

Chertock8 has used an iterative technique to effectively

invert the fluid system for a general body of revolution, in essence, to

find its impedance matrix. As discussed earlier, he generally found that

while the method converges easily at low frequencies, it later becomes un-

stable with increasing frequency. He circumvented this difficulty by alter-

ing his basic scheme to use an average value of previous iterates where

before, for the lower frequencies, he had used only the most recently avail-

• able value. Ref. 29, Chapter 11's general discussion on such summability

techniques provides the rationale behind their potential stabilizing effect.

We too applied this basic idea in our iterative treatment of the fluid-

loaded driven sphere.
1

For the low-frequency limit, where the externally unbounded fluid
30

medium has a purely inertial effect on the vibrating 
surface, Au-Yang

has used an iteration algorithm to find the fluid-loaded resonances of a

cylindrical shell. He starts it out by assuming each resonance's value

and then uses the fluid system to calculate the fluid loading at that

frequency. Next, this pressure solution is introduced into the otherwise

homogeneous structural system, which yields a new root, and so on. He

found the technique to converge nicely for most of the frequencies cal-

culated.

6
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As previously discussed, f (2)(f stands for the contribution of dipoles
nm

on the cylindrical part of the boundary; for every n-m combination we note

the factor sinp in the above expression. The rest of the modal directivity

contributions f (3),...,f(6) turn out to be
n n

f (3) W = e-~ ika(L/2a)cos frrJ(ai~r I.-7

n 2 f n I.A-27)
0

• 1
(4) ()n+ l  ika(L/2afcos -

n 2 kacos ip L c  dr r Jn (kasinpr)
0 (II.A-28)

1
b f(5) ( _)= -) n -ika(n/2a)cos

f - e f dr r J (kasinr) (II.A-29)n 2
0

f (6) (-i)n+l -/ka(L/2a)co

n(p) - kacose s dr r J (kasinpr)~2
0 (II.A-30)

Againf(3 , f(5 account for monopoles at the left and right caps (acting'n ' n (4) ('6)

only for n=0 in the present model); and f and f represent dipoles also
n (4) 6)

at the caps (hence the extra cosp factor for f n4,f ).n n

The grouping miTa/L + ka cos appearing as argument of sin{}/{} in

Eqs. II.A-25, 26 to a large extent determines the far-field effect of sources

distributed along the shell part of the cylinder. Physically, supersonic

axial modes may be expected to radiate efficiently and in the ray direction i*

given by cosp* = 1/Mm, where Mm denotes axial Mach number for the m mode.

Since the modal solution is of the form sin mnaz/L exp(-iwt)-exp[-iw(t-za/c m),

with c =wL/mr,it follows that modal Mach numbers M are given by wL/m1m-l/c=
m m

ka/(mffa/L) so that

mi~a 1

m a + kacosO = ka {- + cosO} (II.A-31)
L

m

20
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Since the sin {}/{} group has its maximum value of unity at the null €*

of Eq. II.A-31, the analytical solution embodies the physical requirement 6

of preferred radiation in the theoretical ray direction. Subsonic axial

modes (for which Eq. II.A-31 never vanishes) lack a clear preferred radia-

tion direction and in fact would have an identically zero far-field were

the cylinder infinite in length. Their acoustic effect for the finite 6

geometry is that of a pair of sources, one for each end of the cylinder,

and thus a contribution which may be expected to be generally low in comparison

to that of supersonic sources distributed over the entire surface, all reach-

0 ing the far-field since their Mach lines (acoustic wavefronts) never intersect. S

Similar statements may be made about radiation in the circumferential

direction and the mathematical behavior of J (kasin) as a function of order

and argument. It may be easily shown that the rotary speed of circumferential

modes satisfying n>ka is respectively supersonic and subsonic. Subsonic con-

tributions instead of being attributed to finite-end effects are due now to the

sources' felt acceleration as they travel in a circle. Such is the prediction
36

of the general FFowcs-Williams Hawkins equation which, incidentally, also

provides the theoretical foundation for Gutin noise -- the sound radiated by

steady blade forces in a subsonic propeller. Acoustic radiation from the sub-

sonic n>ka circumferential modes is here really due to the same mechanism of

* acceleration due to rotary motion.

An important feature of the preceding far-field calculation is that it

accounts for possible source noncompactness in both circumferential and axial

directions. This is necessary because in Chapter IV the model will be applied

* to a very high-aspect ratio cylinder for which the condition kL>>l is satisfied

over much of the frequency range investigated. In fact, although the far-

field condition kR>>l is always strictly satisfied, the ratio R/L of field

point distance to cylinder length turns out to be only about 4 (here for

* convenience R is dimensional).

However, we argue that by keeping just the zz term (and no higher-

order contributions) in Eq. II.A-23 the theory adequately accounts for phase

differences along the cylinder axis, or equivalently in the time domain, for

the z-dependence of retarded times T = t - R/c = T(z)for sources distributed

21
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along the cylindrical axis. Given that the approximation's neglected
term inside the parenthesis of Eq. II.A-23 is known to be 2/2(z/R)2

l/(/), one

may readily estimate its possible impact on the phase information for

parameters of interest here. First, we note that axial noncompactness

will have greatest effect for field points along the cylinder axis 0=0

or 180 . For these, zz/R =cos0.z/R=z/R, so that the percent error of S

the neglected term is I/2(z/R). Thus, for the Chapter IV values of

z max= L/2=9.58 ft and aR=45 ft', the upper bound of the phase error is about

12%, which should not seriously affect the character of signal cancellation

or reinforcement at these two far-field points. S

As explained immediately after Eq. II.A-23, the radical which appears

in all denominators has been even more simply approximated to yield the

( three-dimensional spreading factor 1/R. For the cylinder of interest here

the greatest "true" source-field distance is 452+(9.58)2 = 46, which

implies that in using R=45 ft as measured from the cylinder's centroid an

error of less than 2.3% (or .2 dB) is incurred in so estimating the level

for that "worst" source.

B. The Structural System

In Section A we have derived the fluid system modal equations. Here

we develop similar equations for the structural system, i.e., for a framed,

simply-supported, finite cylindrical shell with end caps. The shell is

submerged and thus loaded by the fluid pressure vector of Section A, which

we recall provides for radiation loading at the cap ends. Consistent with

the analysis in Section A we assume that cap motion takes plase only for

n=O, so that as earlier stated, computed cap pressures for n > 1 are due S

only to diffraction from the cylindrical part of the shell surface and may

be expected therefore to yield a far-field on-axis level of modal radiated

pressure significantly below that for n=0. The system is driven by a force

distribution applied either at one of the frames or directly anywhere on

the shell skin. The structure may also be driven axially by a load acting

at the end cap. Shell frames, caps, and the applied drives are all assumed

circumferentially axisymmetric and thus describable by the cosn series.

22
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Sections B.1,2 develop the model for an unframed shell with end caps.

Section B.3 covers the inclusion of stiffening frames. S

Methods for solving the structural-fluid coupled systems will be

discussed in Chapter III.

1. Unframed, Capped Cylindrical Shell with Fluid Loading

The equations of motion for a finite, simply-supported cylindrical

shell appear in a number of standard references, e.g., Ref. 35.

al+~+~ a2 ( 1-v) 2"

Lhu+Lq+Lw P (2){(z+L/2a)-P (4)6(z-L/2a) (II.B-la)

L u+L q+L W 0 (II.B-ib)

n 7U..nsq. W a2 (1-V2 
!

}"'" :"

L u+L q+w (rZ )Pr(') (II.B-lc)

where u, q, w stand respectively for axial, tangential (or circumferential),

and radial displacements; the shell has radius a, Poisson ratio v, thickness h,

and Young's modulus E. Figure 11.2 shows the generic geometry. The effect

of the caps on the shell has been modeled as a set of (unknown) reaction
C CCLR -. -'--

pressures pzLR in Eq. II.B-la; shortly, pzL ,R will be expressed in terms

of cap displacements through the dynamic equation for cap motion. F and
r

P are respectively the externally applied drive and radiation loading on

the axial surface of the cylinder. The operators LI,... ,L given in Appen-
1 9

dix II.B correspond to the Donnell-Mushtari thin-shell theory.

For a simply supported cylinder, we let

mir
m U n cos- (z+L/2a) (II.B-2a)

u ME cos - z+L2

mg a

q E q sinno sin -s- (z+L/2a) (II.B-2b)

23
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w E E w cosn4 sin -~ (z+L/2a) (II .B-2c)
n m nm L

and also

CL,R L,R mira
'p 64(z+L/2a) E E p cosn4 cos -L (z+L/2a) (II.B-3a)

mit

prFr 4~,z) E E~ Fr )cosn sin m~a(z+L/2a) I.-b
nm nm

*Substituting Eqs. II.B-2,3 into II.B-l one obtains

CL CL
A A A u p -p1 2 .3 nm z z

nm nm

2 2
(A A A q a (1-v 0 (II.B-4)

4 5 6 nm Eh

A A Ag j W F p
L7 8 9nm r nm r

where the quantities A through Aare given in Appendix II.B(1).1 A9

2. Equation for Cap Motion

Each of the two end caps is assumed to have mass M and to move
c

* rigidly in the axial direction under cap fluid loading, drive and shell

reaction forces. The fluid loading on the caps is assumed evenly distri-

buted and thus constant over the radius as measured from the caps' center,

whereas shell reaction forces are taken as acting only at the shell-cap

4. circumferential interface. For examp'le, for the left cap at z=-L/2a.

I C

CC z 0 C
-iwM V L =a 2 r rpL 6(r-1) + F L ~( - + L (II.B-5)

c jdr= r0 n=

where we have accounted for the possibility of an externally applied drive
CL C

at radial position r; p Lfdenotes fluid loading, and p L the reaction
0 z n=O zn=O

24
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-2.
with the shell structure; M C p tia ,t=cap thickness, and p = density

of metal. Eq. II.B-5 thus becomes

C C C
iccap L L I L,f (IB6
PC Vn=O PZn +Fz+ 2 p z

n n n

where for convenience of later analysis we expressed 2cap, the cap reactive

impedance normalized by c, as

cap =-ika (-) (t/a) 7 (II.B-7)

where p is cap material density. A similar expression may be derived for
CR c

Vn..-o the axial velocity for the right cap. Again, the present model allows

for a finite left side in Eq. II.B-6 only for n=0. As discussed in Section II.A,

more complex cap modes could be modeled to match higher n shell modes but for

simplicity and tractability this is not pursued here. Letting now z +L/2a

in Eq. II.B-2a we observe that

V E U I (II.B-8a)
n-O m=O (n=o)m

C
R ( 1 m

v = u
n0O m=-O (n=O) ,m (II.B-8b)

where U nm =-i( 1u nmwhich from the system in Eq. II.EI-4 has solution

2 2) CC
U Wa(l-v B (CL - L +B (F -p (II.B-9)
nmEh Il z n nm 3 r mr nm 0

Constants B1, B are given in Appendix II.B(2).
3

Since

mS

m miT a
6(z-L/2a) =cos -(z-L/2a) (II.B-10a)

m0 L/a L

25
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6(Z+L/2a) = -Cos -ff (z+L/2a) (II.B-10b)
m=O L/a L

where

1/2 for m 0

Thus, it follows that

C L 2c C L

nm n

c 2c (-1) C
pR inR (II.B-llb)

nin n

C
L,R

where p are the same shell-cap reaction forces appearing in the equation

for the cap dynamics, e.g., Eq. II.B-6. These inak be eliminated by substituting

Eqs. II.B-ll into II.B-9. Using Eq. II.B-6 for V and the corresponding right-
n=0

cap equation yields:

2 2 CL
+iwa (1-V) 2pc'p L ~) ~

Eh L/a Min n=

2 2 r~ a C
iwa (1-v ) 2 pcaP( B-)E:V R

Eh L/a in=0 1 m n=0

C C
2L 2 in R

Z B E -)F B (-1)F )F
L/a m='0 1 M z LnO-i/_a (m0 1 M Z(n 0 )

C C
1 EB E )PL E B 1) ME: )p R

+L/-a M=0 I -( =

- BF + E BM4l 3 r nm m=l 3 Pr}m (II.B-12a)
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r w 2 (1V2 2pcap 1CR
[+i~ Eh 2pcZ MZ 0B Iem V 0 -=

ia2 (1V2 2pccap C L 2 L
i~ 1- j2EZ ( B) L E 2 B (-1) E

Eh L/a rn-C0 lr n=O La ri-C m z (n=)

+ 2 CR 1ZB-( B )F R Z B (-1) £ )p L
L/a m=0 1m z (= L/a m=0 1 m .n

+- E B(-1) MEp R+ m(lB F - E(-1)'B p
L/a m--0 1 in n m--l 3 r nm M-1 3 r n

(II.B-12b)

C~ C - C R CL
where we have simplified the notation by calling p simply P L h

z n sipl p ,p -thn
fluid pressures on the right and left caps as denoted in Section II.A; and

similarly replaced p by p *the modal pressures for the shell part.
nin

From the system in Eq. II.B-4 one may also solve for velocities

V n -iuwWn on the cylindrical part of the surface. Substituting all we

know so far into that solution yields that

(=) -iwa 
2 (1-v2  26 [P,.cap (V~ 0 (l invL:0

/C C 1 C C

(n=0) Z(n=0)) p 1 p +B(

(II.B-13)

In the above c 1 always since m > 1. For n > 1 the cap velocities
Ci _

VnLRare identically zero and the cap fluid loading does not affect the

motion of the cylindrical surface. Thus for n > 1, Eq. II.B-13 simplifies to

27



CAMBRIDGE ACOUSTICAL ASSOCIATES, INC.

2 2
V iuwa (1-\ ) B (F -p ( .B4

n>l,m Eh 9 r n m(I.l4

We now collect the results in Eqs. II.B-12a, b and B-13 for n=0,

and II.B-14 for n>1 into structural systems for n=0, >1 respectively.

we recognize that iwa 2(1-v) )/Eh = iw(a/h)(p c (l-in))(see Appendix II.B(l)),
s p

and define the following three constants

K1  2iQ(a/h) (p/ps ) c/c p) (a/L)Zc'

K E B

2 m=0 1im

K E B (-1) m
3 m=O 1 m

Then for n=0 we have that

m=lm1
1 0 0 . 0, K B KBm V 11 7 1 17 n

o~~m- 1 Km=lV
0 1 0K1 B7 1 B7 Vnm=2

* . 0 1 0,

M--M1l m=M
K1 7 ()+1 7 nm=M

-------------------- r------------- --------------- -----

0 . . . 0, 1+K K -K K V
1 2 1 3 n 0

0 r------------- T---------------
00 -KI K 1+K K V

01 13 1 12 n=0
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B9 1 7 0 7 -B nm1l

m--2 I m=2 m20 B I-B /(L/a) I+B= /(L/a)
9 I 7 7 7nm-

m I 11= I - )

0___ B I-B/(L/a) I B (L/a)
1- n9 I 7 -1) 7 nm=M

------------- --------------------------+------ ------------- --------------- ------

m=l m--2 m~m I L-B -B. -B IK /(L/a) -K /(L/a) p3 3 3 I 2 I 3 n

----------------------- ------------------------- --- 4-------------------------------------

mr=1 m==2 MR=
-B +B * (-1)MBm I -K /(L/a) I K /(L/a) R
L 3 3 3 I 3 2 2

B 0 0 1-2B /(L/a) -2Bm F
9 1 7 n r 1

in=2 m=2 =2

0 B ii-=22B m-2/(L/a) +2Bm /(L/a) F
9 I 7 7 7

0

o -BI(-1)M2B /(L/a) F
7_ _ 9 7 7 r

nrn=M----------------------------- ---------------------------- --------
r= 1 m--2 m-m II CL

-B -B -B 3 2K 2/(L/a) 2K 3/(L/a) F

--------- --------------------------- ------------- ---------------
Bm=l m=2 M m=m CR

- 3+B (-1) B3  -2K3 /(L/a) 2K /(/F
L 3 3 31 2 Zn

(II.B-15)
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For n > 1 the structural system is purely diagonal

10 V

1rr-

0 1

m=l 0

9 1 -
m=2

-in(a/h) (p/p (c/c ) 0 B 0 {nm=2
5 9.2

0_1 o. .0 . B M

B9  0 • 0 Fr

nml 1

Il-in c) [:~ m:-22 }{ -+in(a/h) (p/p (c/c) 0 B902 (II.B-16)
P M nm

0.~~ .0 B

3. The Frame-Stiffened Cylindrical Shell

The effect of N internal stiffening ring-shaped frawes is modeled
f

here as a set of Nf initially unknown, radially directed (normal to the shell

surface) modal reaction forces. The true drive may be taken as acting on the

shell through a particular ring frame, or as acting directly on the shell skin.

The procedure for the solution of the frame reactions requires that displace-

ments at every axial frame location be computed due to each virtual load in S

the presence of fluid loading. An opposite system of virtual reaction forces

acts on the ring frames, for which a second set of equations relating frame

displacements to reactions may be written with knowledge of each frame's

structural impedance. Finally, equating shell and frame displacements at S
their interface yields a linear system of equations for the unknown reactions.

In the present model we enforce continuity of radial and tangential

displacements between shell and frames (w and q in Eq. II.B-1); so that for p
the shell not only must we calculate the radial influence of the superposed

30
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system of virtual radial loads, but also the radial influence of virtual a

tangential forces (equal by reciprocity to also needed tangential dis-

placements due to radial forces), and tangential displacements for virtual

tangential forces. However, for typical submarine shell parameters the

latter may be assumed to be negligible relative to the others. Therefore, %

if Nf is used to denote the number of stiffening frames, the order of the

system to obtain the reaction vector is 2Nf; and each of the 2N x 2N
f f f

system entries is a combined fluid-loaded admittance coefficient for the

shell and frames. The known right-hand side is a function of the actual

applied drive. After the radial components of the frame reactions have

been so determined, they are used together with the external drive (if

applied directly to shell skin) in Eqs. II.B-lc as the total system of

Fr( ,z) external forces driving the shell.

We calculate the modal radial velocity and surface pressure vectors

for the cylindrical part of the boundary by solving the coupled systems

in Eqs. II.A-13, 14 and II.B-15, 16 for a virtual n-modal load F) acting
n

in frame location j. Thus,

J pJ ... pIMT 
(II.B-17b)nm=l nm=2 nm=M

is known due to F a 
S_- 

---

6(z-z.) E p cosn

where the r subscript on Fj  denotes the radial direction.
rn j

The corresponding tangential modal velocity vector v m, v
T nm ) nm'2
may be calculated from the relationship (v iwq

n -Mnm 

-'m
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(A 8 -- A V.. 1 A, - V + {F /a A7 p il 1a (II.B-18)
8 5) nm k 4  6 A)nm PS c~ly- r n nm

sp

so that radial and tangential velocities may be computed at axial frame

locations z. i=l, Nf through

V (Z.), v (z. E (V ,v ) sin -,, (z. L/2a) (II.B-19)
n 1 nl m nm nm L 1

Thus, defining the admittance coefficients c c by
ij 13

V~ (Z.)
c n 1 1.B-20a)
n..

(] F r/a)

v (z.)
cn 1 CII.B-20b)

n..
13(Fj/a)

v (Z.)
cn I n 1 (II.B-20c)

ij F in/a)

where the t subscript on F denotes tangential, we may therefore write that
t

the total velocity at a sheil surface point z. is given by

Z.) cz (Ptn/ C (II.B-21a)

N fF3/a\

v (Z') i ~I~-JC (II.B-21b)
n 1 j'l PC/ n..
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In the above it is assumed that the applied external drive acts

indirectly on the shell through a frame so that all shell forces are 0

virtual. For the case when a radial drive distribution acts directly on

the shell the right sides of Eqs. II.B-21a,b would contain respectively

the additional terms

F Fo 0
rn 0 rn -o

pc ni pc ni
0

where c. denotes the loading distribution's radial influence at position i,
and Eo. the tangential influence. 0

ni

4. Frame Equations

th
The statement of Newton's second law for the j frame takes

the form

F /a
rn - V (z,)+Z3 v (z) (II.B-22a)

pc 11 n j 13 n j

n n

F t /a
t

n V (z)+Z v (z) (II.B-22b)
pc 31 n j 33 n ""

n n
28

where the frame impedances ZI , . Z have been derived by Harari , and

n nare listed here in Appendix II.B(2). The net force F is given by

n

F - F for drive on frame
r r

no n

r 0n -F for drive not on frame - -

A similar expression applies for F Equations II.B-22a,b may be inverted
t
nin order to obtain explicit forms for V ,v , which then may be set equal ton n •

shell displacements to yield the final system for the unknown reactions in
comb

terms of a combined admittance matrix [A] c

33
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As earlier stated, iteration schemes such as those proposed here S
2

require also a number of operations proportional to N , the precise numbe"
2

BN depending on the convergence rate, i.e., on the number of matrix-vector

products required to achieve the desired level of accuracy (each matrix-
N2

vector product is an N operation). On the other hand, exact standard solvers 0
3

such as Gaussian elimination require CN operations, with C=O(l).

The following ratio of Total Computational Efforts (TCE) therefore

describes the savings potential of iterative methods over exact:

(TCE) Iteration AN2 +B 2

= (ITI.E-la)
(TCE) 2 3

Exact AN +CN

A+B 1A- -- 1- as N (TII.E-ib)
C N

where, again, the first term in both numerator and denominator is a measure

of system generation effort, and the second terms denote actual system-solving

times. Thus, substantial savings could result wherever the needed number of

iteration steps is much less than the system order N.
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where

A= []- [Is-B 2 [1/Cs] (III.D-8)

From here on the iteration technique follows the pattern of technique 2

previously discussed for n=O: For the k=O starting step we set x 2(M+l) = 0
sk=O

x (M+2) = 0 and obtain {x I from Eq. III.D-7 by solving the latter in K22 12
(inner) Jacobi steps with the [B ]-matrix corresponding to [A] above. The cap

mode Eq. III.D-5c is then solved either exactly or approximately, depending for

a more general case on the order of the partitioned-off [Cl subsystem. For S

the present case, [Cl is 2x2 and an exact solution is used in Chapter IV

T k=0
applications. With these values of [x2 (M+l), x 2 (M+)]T on the RHS of}k=l K

Eq. III.D-7, a new {x5 I vector is obtained in K iteration steps and so on.
1 2

As in Method 2 for n=O, the whole procedure here is repeated K outer steps. .
1

Also, as the alternate algorithm for n=0, this one for n>l appears to be

nonstationary but again with a necessary convergence criterion: S(BA) < 1.

This second algorithm for n>l was applied successfully whenever Method 1 was

found to diverge. S

E. Economic Advantage of the Iterative Methods

The total cost of solving fluid-structure interaction problems has two

clearly separate contributions: (1) the generation of the systems, i.e.,

filling up every matrix entry; and (2) the solution process applied to these

systems. In a finite-difference or finite-element formulation N control

points are chosen to represent the surface of the structure and the generated

fluid and structural systems therefore contain NxN elements. The work needed

to fill up each entry depends on the character of the differential equation

describing the structure and on the numerical integration techniques chosen

to perform local evaluations of the Helmholtz integral; hopefully, both oper-

ations can be accomplished with many fewer than N multiplications and additions

for typically large systems. Thus, the total cost of system generation may be

2
denoted by AN2 , where A is a constant.
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2. Method 2

0
Referring back to Eq. II.B-16, we recall that matrix [C ], the

structural modal admittance matrix for modes on the shell surface alone

excluding cap modes, is diagonal and thus readily invertible if necessary.

This is due to the separability of this part of the geometry. The second

iterative algorithm for n>l presented next exploits this feature of the model

formulation without invalidating our basic policy of noninversion, since the

latter is cost-effective mostly, and thus strictly observed, for the fluid

system. More importantly, since structural systems resulting from the in-vacuo

finite-element analysis of a general structure normally are in terms of an

impedance rather than an admittance matrix,no inversion is necessary. Also,

because such matrices are typically heavily banded, the product [I-B ] [1/CI ]2 1
that arises in the following analysis would involve many fewer operations than

3 5the N otherwise required if the impedance matrix [1/C I were fully populated.

Following an approach similar to that for n=0's second technique, we

write that now for n>l
SS

{xI } = [CI{x 2 } + {b
s }  (III.D-5a)

1 1 2

[I -B2]{x 2 } + {(I-B ) Ix (M+I) + {(I-B )i }x (M+2)
2 2 2 iM+l 2 2 i,M+2 2

(III.D-5b)

Src s {x} "

M
x (M+l) ~ .(C ' (i) -(I-B ) x(i)
[2 il 2'M+li 1 2 M+l,i x2

[C] Mr(III.D-5c)M

x2(M+2) i (C 2)M+2,i Xl (i) - (I-B 2)M+2i x 2(i) -

Eq. III.D-5a now is inverted to solve for {x S

(x2  [1/C1 ]xsI [l/C5]{bs) (III.D-6)
s1

which upon substitution into III.D-5b yields

[Al{xs} = - [1S-BS1[1/Csl{bS} + {(I-B 2) Ix (M+l)
1 2 1 2 iM+l 2

(III.D-7)
+ {(I-B 2 ) i,M+2 x2(M+2)
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where (B2] is still given by Eq. III.B-4c. The nonsquare matrix [C is

given by [D I (6 [Cs] is simply [as] of Eq. III.B-2a, a diagonal2 mti
Y11

containing shell-surface modal structural admittances as defined by Eq. II.B-16. -

1. Method 1

Analogous to Eqs. III.C-la and III.C-lb for n=O, for n>l we

have

1 2

k k-l s sk-l
x =B x +c x (III.D-2b) -2 2 2 2 1

for which a convergence criterion is established by writing Eqs. III.D-2a and

III.D-2b in equivalent combined form:

M M 2

0 0b

(III.D-3) DM+4E:'C 4 I'] t3ZF
5 TWith {x} (xs, 2 I itrt~sEs I.-2a and III.D-2b may be shown to be

equivalent to the Jacobi method,

-k -k-l .-x x +~ (III.D-4a)

where

0~~ 0C~4

rB ------- (III.D-4b)

2

s T
and x ( x x I Convergence is obtained when all eigenvalues of []have

1' 2

magnitude less than 1, i.e., S(9) < 1.
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k=1 k= 1

Eq. III.C-13 may now be solved iteratively as was Eq. III.C-11, i.e.,
in K2 iteration steps. The procedure is stopped when k=K 1 steps.

We note that while ([s] is the same matrix as for the k=O iteration,

the effective dr.ve vector {bskl is now clearly different. The method

therefore is non-stationary. As indicated in Ref. 29 , however, the fact that

-gs[BI is constant vs. k keeps the convergence analysis for this subsystem simple,

and a necessary condition to converge now is that S(Bs ) < 1, which is a

different criterion from that obtained previously for method 1 given the basic

differences in system matrix partitioning and the fact that the total scheme

may now actually be semi-exact. We note that this second iteration scheme uses

two nested algorithms: The outer is performed K1 times and corresponds to the

k counter; the inner one is executed K times for each value of k.2

D. Iteration Algorithms for n a 1

Two iteration procedures also are developed for the systems of

Eqs. III.B-2a and III.B-2b. The first of these, however, is fundamentally no

different from the method 1 for n=O, and the only purpose here is to show

briefly how the analysis for convergence still follows the earlier format

though the pressure and velocity vectors now differ in order, and also one of

the coupling matrices, the [6s I matrix of Eq. III.B-26, is nonsquare. The

second algorithm for n>l similarly involves some of the same elements as

method 2 for n=0, but also applies a novel manipulation not previously employed

for one of the system submatrices. In actual applications, this second algorithm

was observed to converge when the first one did not.

Following earlier nomenclature, we now write Eqs. III.B-2a and III.B-2b in

equivalent form suitable for iteration:

{x1 } = [C1]{x } I {bs} (III.D-la)
1 1 2

fx2} [B ]{x I + [C2|{x 51 (II.D-lh)

2 2 2 2 1
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T T
To start, [X1 ,X2] is set to zero so that the k=O iterate of [g ,g2] "T o T starts,

denoted [g,gO]T , becomes[gl,g2] = [bS,01 in Eq. III.C-8a, which then reads S

1' -c2 1 2":"

L; :~ { } = t:lg ] = 4ijos (IIT.C-lO) .0

Eq. III.C-10 may then be solved by Jacobi's method (or by other, more

sophisticated techniques) in a set of K J-iteration steps. We write,

=0 kk=O

s x s .

= [s] + {bs} (III.C-11)

-7 x 1- 2 1x 2  1 9 21 0

where

EBq. = [D (III.C-12a) "'"Ji e ( or
- s

and where [D s] is a diagonal matrix containing Eq. III.C-10's diagonal elements.

Again, the iteration in Eq. 11I.C-II is carried out K2 steps, after which the '.
s s.Tk=0 22Tk=

results so obtained for fx1 ,x21 are used to computed [ 1 g] from -.. i.

Eqs. III.C-Je and III.C-Jf for use in Eqs. III.C-8b. The latter may now be
s s Tk=0

solved iteratively in the same fashion as was [x1l,X2] , or, if this subsystemi ijj

is conveniently chosen to be small enough as in the present case, where it• --' "'

contains only the two cap unknowns, an exact solution for [Xl,X 2 ] T =  may be "i [ /
just ~ Tk=0

jutas economical. These values of [Xl,X 2] are then used to calculate,

using Eqs. III.C-Jc and III.C-Jd, new values of glgdenoted gk=l, kg2 fr". -'
another k-iteration with Eqs. III.C-8a, which then reads: i .
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t -- ------- (III.C-8a)

[22 QIBeT =(III.C.=8b)

where

x, (M+1)

1x 1 1 { i i(III .C-9a)

2

2 1 (III .C-9b)

{g 1  f a 1 iM+l Ix I(M+1) -{a iM+ 2 } 1 (M+ 2) + (C 1 ) iM+1 }x 2 (m+ 1)

(III.C-9c)

+({C } x (M+2) + bs}
1 j,M+2 2

{g 2 -{(I-B)2i'+ }x 2(M+l)-{ (I-B)2i,+ }x 2(M+2)

(III.C-9d)

+{(C) )x (m+1) + (C). I (M+2)
2 iM+I 1 2 i,M+21 l

J1 ( 1 M4-,i x 2 (I

{9} (III.C-9e)
1 S

J1 (C)+,ix2

M M
(1-B2 M+WE (C ) (i)

2)M+Ii x2i=l 2 M+1,ix

{9-S+(III.C-9f)

J(I-B ) x s (i)J lix s W~~
2)M+2..i 2 M+2,i 1M+
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x (M+l) x 2 (M+l) J=1 (C1 )M+l± X2 W

[c] =[C11 + M (III.C-7b)
X M )x (M+ 2) E"--("C':"''.
1
1 M2 1 i= ~ 1 M+2,i X2

[IS-BSl{xs} + (I- M+ }X 2 (M+l) + {(I-B) M2 x2 (M+2)02 2 I). iM+
(III.C-7c)

= Csi{xs1 + {(C ) IX (M+l) + {(C ) Ix (M+2)
2 1 2 i,M+1 1 2 i,M+2 1

M

2 iM+l 2 M+, 2
2 - l (I-B2 )M+2,i2

xIB ~x(M+2)J x (IB

(III.C-7d)

M

x (M+2) +1i

1 i1_1 (C2)M2, xl(i)

iM+1 i,M+2}

the [a]i matrix's (M+l)th column (Eq. III.B-la). Similar definitions apply to

{(C1)i~I { (I-B2) + etc. Fqs. III.C-7a and III.C-7c have order M.

Also, it will be recalled that the upper left MxM submatrix [I S-B sI of [a] is
s1

the identity matrix since [BS 0. Systems III.C-7b and III.C-7d have, for the
1 M

present problem, an order of 2. A summation such as iL_ ('' +l,i '2(

denotes the inner product of the (M+l) throw of matrix [I-B 2] with vector {x2 s

The 2x2 matrices &,:[--B , _JC 2 contain the bottom rightmost four elements(M+l,M+l),

(M+l,M 2), (M+2,M+1), (M+2,M+2) of matrices ci,I-B 2 1 C1,C 2 ' It is important to

point out that such partitioning of the two original. systems should be

mathematically completely arbitrary. For the physical problem at hand, however,

such splitting sets aside the M-subvector of shell-surface effects from the

two-element cap subvector by placing these quantities on opposite sides of

the equations. If more cap modes had been used in the model, the two smaller

subsystems would have been augmented accordingly. Eqs. III.C-7a through III.C-7c

may also be written in combined form:

40
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one realizes that expansions III.C-2 through III.C-4 are also obtained, to the

identical order of error indicated, by simple Jacobi iteration of the combined •

system:

f-- 4= + (III.C-5) 0

or

x Bixk- b (III.C-6)-

where xis now a 2(M+l)-element vector, etc. Thus identifying the equivalence

of algorithm III.C-l to that corresponding to Eq. III.C-5 establishes its

convergence criterion, which is now clearly that S(B)<l. In summary, fixed-

point iteration of joint structure-fluid systems converges if the matrix B, .O

composed of the "self" matrices B1 ,B2 along its diagonal blocks, and of the

"coupling" matrices Cl,C 2 as off-diagonals, has a spectrum all less than one -o-

in magnitude. Consistency proof of algorithm III.C-1 (i.e., that if for some
• k* k* exact k>k* exact

k=k , x1 ,x2 = (Xlx 2 ) , then x = xl, 2  also) follows trivially from

the standard single-system proof. Similarly, although at first algorithm

III.C-1 does not appear to be stationary, i.e., that for both x I and x2 the

effective "self" matrix Beff and associated known RHS beff appear to be

functions of the iteration counter k rather than being k-independent quantities, .

the equivalent system of Eqs. III.C-5 and III.C-6 in fact shows that the

algorithm is stationary and that for the combined system B ffbff are just

Tthe constants B, [b,o] , where T denotes transpose. As previously stated, once

the iteration scheme has been recast in terms of Eq. III.C-5, the latter may be S

changed to other techniques with accelerated convergence, e.g., SOR.

2. Method 2

Eqs. III.B-3a and TII.B-3b may also be written as

[IS-B ](x } + (ai Ix (M+I) + {a Ix (M+2)
1 1 i,M4-l 1 i,M+2 1

(III .C-7a)

c~lxs} + C }x2(M+l) + {(C) }x(M+2) + {bS}1 2 1 i,M+l 2 1 iM+2 2
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C. Iteration Algorithms for n=O

1. Method 1

To simplify the nomenclature, we drop, in some of what follows . -

next, the curly and square brackets from quantities defined in Eqs. III.B-3,

III.B-4 and III.B-5. The first algorithm we wish to explore for Eqs. III.B-3a and

III.B-3b, is

k k-l k-l
x Blx + Clx 2  + b (III.C-la)

k k-l k-l
x =Bx + C x (III.C-lb)

2 2 2 2 1

0 0
To begin, one sets x2 = 0 and x1 = b. The solution x1 = b does not really

1 1
correspond to the in-vacuo response of the structure because b is not a f, but

instead only D f. The first few iterations go as follows:

k 1 xI = (I+BI)b (III.C-2a)

1 2
x2 =C b (III.C-2b)

22

2 2k 2 X, (I+B +B )b+C C b (III .C-3a)
11 1 2

x2 = (C+C B +B C )b (III.C-3b) .

2 2 2 31 2 2

k 3: x 2 IBIB+B~ (CC2+BCIC2+CIB2C2+CIC2BI)b (III.C-4a) °'

3 2 2

x 3 (C2+C2 B +B2 2 +B 2 C2 +B2 +C2 +C 2CC 2 )b (III.C-4b) P-

At first the analysis for convergence of x and x given the expansions
1 2 gvnteepnin

Eqs. III.C-2 through III.C-4 appears complicated due to their coupling. For

example, although the E B b part of the solution for x is reminiscent of
n=0 1

iteration by Jacobi's method, there is also the C C b + ... part which
1 2

necessarily changes the criterion of convergence from S(B )<l to something else

(we follow the standard nomenclature of Ref. 29, where S(BI) stands for the

spectrum of matrix B1 ; thus S(B )<I states that all eigenvalues of B1 must be

less than 1 in magnitude). This situation is greatly simplified, however, when "'"
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purposes of iteration, Eqs. III.B-la and III.B-lb for n=O are now written as

follows: S

{xI = [B ]{XI + (C ]{x 2 + {b} (III.B-3a)
1 1 1 1 2

{x2} = [B2] {x2 } + [C I{x (III.B-3b)
2 2 2 2 1

where

[B] = [D [D-a] (III.B-4a)
1 a 1

[C] =[D] [ (III.B-4b)

{b} = [D cL [132 1{f (III.B-4c)

[B] 1  [D [D -y] (III.B-4d)
2 y y

[C21 = [D 1-[61 (III.B-4e)
2 y

where D stands for the diagonal matrix composed of the diagonal elements of

[a], and [D ] for that corresponding to [y].
Y

For n>l, one may similarly write

{xI = [Cl1{x + {bs }  (III.B-5a)
1 1 2

{x2 I = [B 2 {x + [C l{x I }  (III.B-5b)
2 2 2 2 1

where {bs} = {fs}, and [B I is still given by Eq. III.B-4d. The (M+2)xM matrix
2 -s

[C2 ] is given by the product [D I-[6s].

For both the n=0 and n>l formulations we now develop two separate iteration

algorithms and discuss their convergence. For example, for the n=O problem we

show that the two algorithms place upon the joint system different analytically

derived convergence criteria, so that if one algorithm fails the other may

possibly converge. The nl problem is treated similarly. we will show in

Chapter IV that over the frequency range explored at least one of the iteration p

techniques always converged to the exact solution.
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which contains a free convergence-optimization parameter not analytically

available in the J-method. However, no attempt is made here to adapt such SOR-

type techniques to the basic algorithms, and we merely note that the savings

realized as reported in Chapter IV, while significant, could thereby be made - -

even greater.
0

B. System Equations

Equations II.A-13 and II.A-14 relate surface modes of fluid pressure

to surface modes of fluid particle velocity for the nonseparable finite-cylinder

geometry. Eqs. II.B-15 and II.B-16 relate, for the structure,vibrational S

response to an applied drive in the presence of the surrounding fluid, which

contributes an unknown load distributed over the axial surface of the shell

and end caps. Equating the surface response vector to the surface fluid

particle velocity yields the final coupled systems from which {v} and {p} may

be solved for a given drive load configuration {f}. Eqs. II.A-13 and II.B-15

apply for circumferential n-mode n=O, and Eqs. II.A-14 and II.B-16 apply for

nal. Thus in summary, we have that for n=O,

[C]{v} = [011{p} + [821{f} (III.B-la)

[y]{pl = t6]{vl (III.B-lb)

where every matrix contains (M+2)x(M+2) elements (each row and column contains

M shell surface models plus one cap mode for each end of the cylinder, and each

vector contains M+2 elements. For n>l, we have

{vS}= [W5]{p s1 + [6]{f s} (III.B-2a)

1 2

fy]{p} (6S]{vs }  (III.B-2b)

where [y] and {p) still have (M+2)x(M+2), and M+2 elements, respectively, but

where now {v s } denotes the shortened M-element modal velocity vector which

contains only shell-surface modes; we recall that this is the result of

assuming that for n~l the caps are rigid. Similarly, the s-superscript on 1,-

62, and f indicate a rank of M rather than M+2. Matrix [6 1 contains M+2 rows,

one for each of the M+2 pressure modes, for which a "diffracted" cap mode

exists; and it contains M columns, one for the effect of each of the M shell-

surface velocity modes on each pressure mode, including cap pressures. For

36
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III. ITERATION TECHNIQUES FOR COUPLED STRUCTURAL-FLUID SYSTEMS FOR A FINITE

CYLINDER 0

A. Introduction

The main purpose of the present study is to show whether fully

O populated structural-fluid systems as would arise from a finite-element or •

modal analysis of a nonseparable geometry may be solved iteratively and thus

more economically than by the standard exact method, which effectively requires

the inversion of at least one large matrix. For N-order coupled systems the

exact solution requires a number of operations proportional to N3 , while the

corresponding number for iterative techniques is only N 2 . In our earlier
1

investigation for the spherical shell we demonstrated that well-established

iterative techniques, e.g., Richardson's method and the so-called method of

summability (Ref. 29, p. 345), could be applied to solve those versions of the .

Helmholtz and dynamic response equations. However, due to the separability of

the spherical geometry, all matrices were effectively diagonal and the viability

of this promising approach went untested for the more fundamentally complex

general case.

In this chapter we develop iterative schemes to solve the finite cylinder

problem as a representative of a wider class containing off-diagcal elements.

• For each procedure we discuss qualitatively conditions for successful iteration

and attempt to explain why a specific technique may work when another fails.

Actual numerical results and comparison to exact solutions are deferred to

Chapter IV, where we also tabulate computational times vs. number and type of

iterations. We find that the stability of computations often hinges on

judicious system subpartitioning, a concept 
which has been commonly applied,

though in somewhat different context, to the otherwise difficult treatment of

certain ill-conditioned matrices.37,38,39

One general comment applies to the convergence rate of essentially all

the algorithms developed. Initially we show that the resulting expansion for

parts of the iteration algorithms may be interpreted, after proper partitioning

of matrices and vectors, as an application of fixed-point, or Jacobi, iteration

(Ref. 29, p. 71). In some cases, the convergence rate of such J-method solutions

could be improved substantially by a recasting to yield equivalent expansions

corresponding to the Successive-Over-Relaxation (SOR) method (Ref. 29, p. 73),
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comb 1 2 Nf 1 2 f T
[A] [Fr , F ,... ,F r  ; Ft n F " n ' t

0' '• n n n n n n
[0,0,..,A Ai*,0 .... 0;0,..,.Bi , . . .0]T

=F (II. B-23)r1

no -o -o -o T
[-Clc 

2 ,. . ,- c N f ; I -cf2 ..... CNf

where

zi
33

0 A. (II.B-24)1 i i i Zi
z z -z z
11 33 13 31

n n n n

i
-Z 3 1

.- n (II.B-25)1 i i i i
z z -z z
11 33 13 31

n n n n
*th

The right sides of Eq. II.B-23 are, (1) radial drive applied to the i frame,

(2) radial drive acting directly on the shell. In the former case the model

assumes that the applied drive distribution is concentrated at an axial lo-

cation, while in the latter the radial drive has an arbitrary axial distri-

• bution. For both cases the circumferential drive distribution is arbitrary.

Again, upon solution of Eq. II.B-23, the combined radial loading system

on the shell (reactions plus drive) becomes the effective shell drive which

together with fluid loading appears forcing the structural systems of

*Eqs. II.B-15 and 16).

3
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IV. APPLICATION OF THEORY

A. Introduction

The modal solution technique developed in Chapter II is now

applied to the idealization of an actual structure for which extensive

* far-field measurements exist. Comparisons are made between theory and

experiment. The iterative techniques of Chapter III are also applied

and their results are compared to the exact solution.

The cylindrical structure shown in Figures IV.la,b is one of five

* equal segments spliced to make up the total physical model in Ref. 40,

which is a recent compilation of related experimental acoustic and re-

sponse data collected by the Penn State group of Burroughs, Hayek,

Hallander, and Bostian, in coordination with the ONR. Figure IV. 2

*shows the simplified structure used for our calculations. Only the

large joint-band frames have been kept as structural discontinuities,

while all non-axisymmetric details, including axial stringers, have been

eliminated. The simplified structure models what Ref. 40 calls the single,

* or inner, shell configuration. The predictions reported here are for a S

radial point drive applied either directly to the shell skin at the cylinder's

midsection point, or at on- f the two frames nearest the center. Structural

parameters corresponding to Figure IV.2 are listed in Table IV.l.

For reasons outlined below having to do with system size and a limited

computational budget, calculations were not carried out by the present method

beyond 500 Hz. In order to continue the comparison of measurement to pre-

diction to 2500 Hz, the fluid model was replaced by that for an infinite

cylinder.

For clarity of presentation, the discussion and physical interpretation

of predictions are given first at some length using the results obtained from

solving the coupled systems exactly. We demonstrate subsequently that in

fact all such exact results are also obtainable by iteration; thus, they may

be viewed as converged solutions. The calculations describing just the

iteration process are then displayed, both in frequency-sweep form and for

# directivity patterns. In order to present as many results as possible with
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a minimum of repetition, some of the directivity patterns for the iterated

solution correspond to frequencies which are different from those shown

under the section for the exact results. We conclude that the iterative

solution of fluid-loaded structural systems is both feasible and cost

effective, at least in the low-frequency range where fluid loading has

a global effect and is therefore less amenable to local modeling.

Since, as pointed out in Chapter III, convergence rates do not de-

pend on the coupled systems' forcing function, iterated solutions will be

* presented only for the drive-on-skin case. Iterated solutions for the

driven frame may be assumed to converge similarly.

B. System Size vs. Frequency

The modal theory of Chapter II requires that the series of

simply-supported axial modes be truncated to yield coupled systems of

finite rank. Here we determine quantitatively the minimum needed number M

of such modes in terms of the frequency-dependent flexural wavenumber kf

for the shell plating. The minimum system size M must capture the shell -

flexural wavenumber k and if possible overshoot it by a certain margin.
f

The inclusion of k in the m sum allows a fair representation of the
f

structural far-field effect of each frame on the others, as required by

off-diagonal frame admittance coefficients in Eq. II.B-20; while the

additional modes are needed to calculate the diagonal, self admittance

elements. Thus, we have that

M > L/a k a (IV.B-1)
7T f

With Eq. IV.B-I serving as the criterion for system size, the minimum

matrix order M vs frequency is given on the second column of Table IV.2.

For reasons of economy, only the range 20 Hz<f<500 Hz was investigated

here and the value M was kept fixed at 30 for all calculations. -

Values of the normalized acoustic wavenumber ka are given on the

third column of Table IV.2. We note that for every frequency the below-

coincidence condition k a<ka is satisfied, so that every plating wavenumber
* f

listed has a subsonic trace speed and thus does not contribute directly to
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the far-field. The coincidence frequency for the shell skin is approx-

imately 35.3 kHz and therefore well above the range of interest here. 0

However, for the shell in question the axial modal wavenumber m r/(L/a) *" ""

is given roughly by m-(.14), so that for example 500 Hz contains m=1,2,3

modes which are supersonic and therefore radiative; the rest, 4<m<30=M,

are subsonic. The relative contribution of subsonic and supersonic modes 0

to the acoustic field has been discussed qualitatively in some detail in

Chapter II, Section A.

C. Choice of Number of Circumferential Modes

In the theoretical model, stiffening frames represent axial

structural discontinuities; however, since no circumferential discontin-

uities which would render the structure nonaxisymmetric are considered

here either for the framing or for the skin, a structural criterion ana-

logous to that of Eq. IV.I need not be imposed on the circumferential

mode n. The only requirement on the number of n modes is that they in-

clude all those which radiate efficiently, i.e., all n satisfying n<ka.

Here we have used the n=0,l and 2 modes, of which according to Table IV.2

column 3, only the first is supersonic over 20 Hz <f<500 Hz. However,

strong n=0 response is not anticipated for the low frequencies considered

and all three modes may in some cases contribute comparably to the far- .

field signal. Acoustical radiation from subsonic and supersonic circum- p

ferential modes was also discussed qualitatively in Chapter II, Section A. . -

D. The Effect of Stiffening Frames on Acoustic Radiation

In the low frequency limit frame structural impedances become

inertial and thus vanishingly small. Internal frame-skin reactions are

similarly zero as the entire structure moves in its fundamental beam mode.

As the frequency increases, frame-shell impedance mismatches grow and so

must reaction forces. Frame reactions may be expected to be greater for "

those frames positioned away from the nodes of an excited m shell mode;
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e.g., an m=l resonant mode will generally cause greater reactions for

the two frames near the shell middle than for those near the two ends. -

Conversely, the m=5, 10,15.. .resonances should have associated smaller "

reactions since the four frame positions coincide naturally with modal nodes.

Given sufficient structural damping, at higher frequencies frame reactions .-

become acoustic points (or rings) of origin wherever the shell-plating 0

structural far field they excite is below coincidence.

E. Exact Solutions: Numerical Results

E.1 Summary

All far-field predictions presented here use the

spherical coordinate system of Figure II.l. The field position defined
0 0by 4=0, i=90 (beam aspect) is in line with the drive direction; =180

i=900 points in the direction opposite the drive. Preliminary spot 0

checks on the shape of the acoustic directivity revealed that for most

frequencies in the range investigated pressure maxima occurred within

o 0
elevation angles i=65 and 850, typically in the vicinity of 4=80

Far-field results are presented at 200 intervals for both circumferential -

and elevation angles. Since directivity patterns were fairly smooth, the
o 0levels shown for i=80° are in essence equal to those for *=90 , which are

not shown. The dimensional distance Ra from the cylinder's center to the

far-field point is 45 ft; thus, k'Ra varies in value from about 1 at 20 Hz .

to just over 25 at 500 1lz. The pressure has been normalized by the quantity
2

F/a2 , where F is the magnitude of the applied drive.

E.2 Exact Solution: Frequency Sweeps

0
Figure IV.3 shows frequency sweeps at 4=80° , 4=0 and at

=80°  4=180° for the drive on the shell. Figure IV.4 shows similar results

for the drive on the frame. The acoustic field for the drive acting directly

on the fluid is given in both by the force-dipole curve. The latter far .

field is antisymmetric with respect to the 4=900 plane and its levels for
04=0 and 180 are identical. In Figure IV.3 the spectrum for 4=0 generally --

A- °
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0
stays above the dipole curve, while that for c=180 seems to oscillate

about it. For lower frequencies the =0, 180 curves merge in agreemept .

with the expectation that the structural response should then be primarily

rigid body with an associated dipole-like far field. In the extreme low-

frequency range bounded above by the fluid-loaded fundamental, the system's

total impedance is stiffness-controlled and some departure from the dipole

curve should be expected. This, however, is an artifact of the model since

the subject actually was a freely suspended hull.

Figure IV.4 corresponds to the driven-frame case. The relatively

0
small differences between the =0, 180 curves indicate rigid-body motion

over most of the spectrum.

E.3 Exact Solution: Directivity Patterns for Drive on Shell

Figures IV.5-8, corresponding to the drive-on-shell case, .

show predicted directivity patterns for a few of the peaks in Figure IV.3,

=0 spectrum. Each figure shows three curves corresponding to three

different elevation angles; each curve shows far-field pressure vs. circum-

ferential angle on a plane normal to the cylinder axis. Thus for example, -
0

the =0 value of the *=80 curve on Figure IV.5, roughly -64 dB, corresponds

to the local peak at 100 Hz in Figure IV.3. Similarly, the 0=180 value for

0 0
i=80 corresponds to that for d=180 at 100 Hz in Figure IV.3. The low

0
values obtained near 4=90 (direction perpendicular to the drive at every-.

elevation angle) further confirms the dipole-like behavior of the acoustic

field. Since the drive acts at the cylinder's exact center, the directivity
0

patterns of Figures IV. 5-8 are symmetric about the p=90 plane; e.g., the
0 0 0

pattern for =I00 is the same as that for p=80° , and that for =140 is
0

equal to that for i=40

0
The gap at 200 Hz between the 4=O, 180 curves has been attributed

to n=0,2 contributions comparable in magnitude to that of n=l. Figure IV.6

shows the 200 Hz far-field pattern. We note that while the largest pressure
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still belongs to the i=80O elevation, other elevations may dominate at

other 0 positions. •

Figure IV.7 and 8, respectively for 300 and 400 Hz, continue the

trend towards increased complexity with increasing frequency, especially

for lower elevations. S

Figure IV.9 shows the directivity pattern on the plane containing

the cylinder axis and the 0=0 point. The circumferential angle is fixed

at 4=0 and the elevation angle varies from the position =0, which looking

to the cylinder sees only the right cap, to *=180 0 which sees only the

left cap. Curves are shown for the four peak frequencies displayed in

Figures IV.5-8. As previously stated, all curves are symmetric with re-

0 0
spect to =90 . For each curve, the i=O, 180 values denote predicted

radiation levels at the two far-field points which coincide with the

cylinder axis. These levels increase with frequency (as expected), though

apparently not monotonically.

Since the theoretical model allows cap motion only for n=0, low

levels at 4=0, 1800 for 100 Hz are consistent with the earlier assertion

that the structure primarily responds then as a rigid beam; for n=l the

caps are assumed rigid, and low but nonzero levels at q=0, 1800 are due

then to diffraction of signals emanating from the shell surface. The

higher levels observed for the other curves point indirectly to the greater

participation of the breathing mode as frequency increases. Finally, as

previously mentioned, the highest absolute levels were predicted near

p=80° for most frequencies.

E.4 Exact Solution: Directivity Patterns for Drive on Frame

The peaks in the calculated spectrum at 4=80° shown in

Figure IV.4 for the drive-on-frame case correspond approximately to fre-

quencies 100, 200, 350, and 500 Hz. For these, directivity patterns are V

shown in Figures TV. 10-14. Figures IV. 10-13 show patterns on planes
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normal to the cylinder axis; Figure IV. 14 shows patterns on the plane

defined by the cylinder axis and the point 4=0. Unlike the drive-on-

shell (middle) case, these radiation patterns are not symmetric relative

to the 4=900 plane. Thus, to provide a better overall picture of the

acoustic field, the elevations angles displayed have been changed to

p=40° , 800, and 1400; 400 and 140 are of course equidistant from the

cylinder axis.

For 100 Hz, Figure IV.10 shows characteristic dipole patterns for
0

all three elevations. As before, i=80° provides the highest levels. The

small differences between the =40° and the 1400 curves suggest that for

low frequencies the rigid-body structural response is insensitive to the

precise axial position of the frame being driven.

In Figure IV.lI for 200 Hz, the departure observed from the dipole

pattern is consistent with the gap between the two curves on Figure IV.4

widening at that frequency. The ip= 800 elevation no longer dominates
0 0the acoustic field; also, the differences between the 400 and 140 curves

appear more pronounced in the lower hemisphere.

-n Figure IV.12 for 350 Hz the highest levels return to i=800 .

However, substantial asymmetry is indicated by the curves for the other

two elevations.

Figure IV.13 again shows a dipole pattern at all elevations with

4=80° containing the highest levels.

Figure IV.14 shows the i- dependence of the acoustic field for

increasing frequency; the 500 Hz curve contains the largest value --

0
roughly -45 dB at t=i00 ; 350 Hz follows with a level of about -51 dB

at t=60°and so on. The predicted on-axis values are also observed to

increase with frequency. Interestingly, these values seem fairly symmetric

relative to 4=90 even if the rest of the field obviously is not; i.e.,

two far-field observers, one facing the right cap and the other the left,

would hear roughly the same -69 dB at 500 Hz, the same -78 dB at 350 Hz, etc.
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F. Iterated Solutions: Drive on Shell

F.1 Summary 0

In Chapter III iteration algorithms were formulated to

solve the coupled fluid-structure systems for the frame-stiffened, finite

cylindrical shell. It will be recalled that for n=O the resulting 0

pressure and velocity modal vectors are equal in rank, and that for n>l

the pressure vector is two enti;e-s longer than the velocity vector be-

cause cap element motion is then taken to be identically zero. For both

n=0, n>.l, the first technique was the standard Jacobi iteration (J) method

adapted to coupled systems. As previously discussed, Jacobi iteration

uses a single iteration counter and convergence (or divergence) occurs

after applying the algorithm a prescribed number of steps. The second

form of iteration for both n=0 and n>l equation sets is actually a two-

counter process which uses an algorithm nested within another. As was

pointed out in Chapter III, part of the partitioned subsystems could be

solved either exactly or approximately (Eqs. III.C-8b and D-5c). Here

we use the exact option so that these two-step algorithms fall in that

category of linear-system iterative solution techniques which Ref. 29

terms "semi-exact.""

Iterated solutions were attempted here first by the J technique

for every n mode of every frequency. Successful convergence was usually P-
observed for the lower frequencies between 20 and 100 Hz. However, as

frequency increased, the J method was found to diverge often. For such

cases the two-step algorithms were applied with both counter limits set

to 3 and convergence to an acceptable solution was always observed. Thus,

in the following presentation of iterated results the figure label "iteration

counter(s)=3" states that the approximate solution was obtained either in

three J steps, or in three steps of the two-step processes; "iteration

counter(s)=l" always refers to the solution after a single J step, which,

as discussed in Chapter III, is the quasi in-vacuo result obtained by

approximating the structuiral impedance matrix by its diagonal, which is ..-

then inverted. The results shown were chosen as representative of the

body of data generated.
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F.2 Iterated Solution: Frequency Sweeps

Figure IV. 15 shows exact and approximate solutions for the
frequency sweep at =80° , 4=0 for the drive-on-shell. The exact curve

is the same as that on Figure IV.3 with '=0. Although the first J step

yields a poor estimate, an excellent approximation is obtained in three

generally nested steps for all frequencies except perhaps 400 and 450 Hz.

The directivity patterns will show, however, that such close agreement

was not obtained at other orientations in the acoustic field.

Figure IV. 16 shows the frequency sweep at the two far-field positions

coinciding with the cylinder axis (4=0,p=0 and =0, i=180 ). Below 200 Hz

even the one-step solution appears adequate. The iterated solution using . -

counter(s) set to 3 is again for all practical purposes the exact solution.

F.3 Directivity Patterns: Iterated Solutions

Figure IV. 17 shows exact and approximate directivity patterns

0 0
on the plane defined by p=80 with 0 varying from 0 to 360 ° . The exact

solution is taken from Figure IV.5 (different scale). We note that the

degree of improvement vs number of iterations appears to be global in that

convergence is equally good for all values of circumferential angle.

Figure IV. 18 shows pattern and convergence behavior for 300 Hz. The

convergence rate for this case appears greater than that for 100 Hz since

the zeroth solution is now a worse first estimate.

In Figure IV. 19 for 400 Hz convergence ceases to be globally mono-

tonic. Thus, after three steps the solution for 0=180 seems to be down

about 8 dB and that for =0 up 4 dB; this 4 dB overshoot was seen in

Figure IV. 15 at 400 Hz. Figure IV. 20 shows the pattern for 500 Hz.

Figures IV. 21-24 show directivity patterns on the plane containing

the cylinder and 0=0 axes. For all figures the circumferential angle -

has value 0 and the elevation angle p varies from 0 to 1800. Convergence

was observed to be fairly good over the frequency spectrum investigated

by the method.
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It should be pointed out that within the frequency range investigated

here, i.e., below 500 Hz, several fluid-loaded resonances were measured in p

Ref. 40, part 2; and that although only far-field predictions have been

presented here, the iterative algorithms were observed to converge for all

n modes to the correct structural response (and associated near-field sur-

face pressure) within this resonant range. 5

G. Comparison to Experiment

Figure IV. 25 shows measured beam-aspect (i=90° , 4=0) levels

for the cylindrical structure of which Figure IV.la, b shows one of five

equal segments.4 0 Also shown are predictions by the present model for

frequencies up to 500 Hz, and by a simpler infinite-cylinder fluid model

for frequencies between 500 and 2500 Hz. The force-dipole solution is

also indicated.

As previously pointed out, and as again the figure shows, predictions

for the low frequency range hover about the force dipole with more con-

sistent departures taking place as frequency increases. Except for the

measured anti-resonance dip at 1 kHz for the drive-on-frame case, pre- -

dictions and the dipole curve would seem to underestimate the mean of the

data by about 25 dB.

However, the results of previous experimental and theoretical
41,42 ,

studies strongly suggest that beam-aspect acoustic spectra of force-

driven cylindrical structures similar to that investigated here are

closely approximated by the force dipole at the lower frequencies, and,

at higher frequencies below coincidence, by the infinite plate solution
42 3

known classically to be 6 dB above the force dipole. Junger for example,

has identified three primary frequency ranges for a typical heavy-framed

submarine hull. In the lower of these the ship behaves as a rigid beam

and the force-dipole solution is roughly valid. For the next higher,

compartment-resonance, range he has established structural damping criteria

under which bounding frames play a subdominant role in the response function -'-' -

which then corresponds to the infinite-plate solution; although at fluid-

loaded resonances peak levels may otherwise far exceed those by analytic
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asymptotic formulae, he finds that the latter nevertheless provide

good mean-value curves. Finally, above the hull's ring resonance he .

determines that if the shell plating is treated as an infinite system,

its acoustic field closely approximates the frequency-averaged measured

data.

Therefore, the discrepancy in overall behavior between present

and earlier measurements plus theoretical conclusions remains to be

explained.

H. Computational Times for Exact vs Iterated Solutions

We end the discussion here with a brief summary of the time-

savings advantage of approximate solutions. In all fairness, however,

it should be pointed out that for the present modal formulation total

computational costs were dominated by the generation of matrix elements

for the fluid system rather than by the solution technique applied to

effect its inversion. In effect, the A constant in Eq. III.E-la had a

large Value as a result of the integration routines used here. Neverthe-
2

less, if for the moment the AN system-generation contribution is ignored P

in Eq.III.E-la, one may calculate part of the N--c asymptotic value of the

savings ratio between iterated and exact solution, i.e. ,the (B/C)-1/N part

of Eq. III.B-lb (N=M+2 here). This measure of savings is quantified next.

Table IV.3 shows computational times needed to solve a given, gen-

erated coupled system. Percent time savings over the exact solution are

tabulated. The first of the approximate solution entries, K1=I, K =1,2
refers to the J method with K1 and K2 as defined in Chapter III. The

I
second entry, K=K 2=3, refers to the nested, two-step iteration process,

for which a set of KI, K2 combinations were also applied yielding solutions

of accuracy ranging from the generally acceptable (KI=K =3), to the generally .-.-
12

unacceptable (K=K 2=1).

Had a technique such as DAA been used to model the fluid in the

present problem, the ratio of total matrix inversion to matrix generation -
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costs would have been essentially given by (B/C)l/N. The reason for this

of course is that DAA requires a single fluid calculation valid for all S

frequencies and thus eliminates much of the system-generation effort.

However, the final solution would then be doubly approximate because the

approximate inversion process would then operate on an approximate fluid

model.

Finally, as discussed in Chapter III, SOR-type recasting of fluid

and structural systems should be expected to improve convergence rates

without significant computational penalties. Comparison of exact and
S

iterated solutions should appear then even more in favor of the approximate

method.
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V. SUMMARY AND CONCLUSIONS

A theoretical model has been developed to predict acoustic

radiation from a submerged, finite-cylindrical shell internally

stiffened by ring frames and with flat, movable end caps. The model

has been applied to a structure for which recent acoustic data has

been collected. Predictions differ from existing measurements by

roughly 25 dB; however, they appear consistent with the results of

a number of previous experimental and theoretical studies.

Iterative schemes have been developed to solve the associated 5

fluid-structure coupled systems over a moderate range of frequencies

encompassing several fluid-loaded resonances. We have demonstrated

that such techniques may be applied to generate essentially the

exact solution in a reasonably small number of iterations. By com-

paring computational costs to those for the exact result, we found

iteration to be economically advantageous for all frequencies considered.

Lastly, we have noted that, for an arbitrary fluid-loaded struc- p
ture modeled using finite differences or elements, the ratio of total

computing cost by iteration to that using exact inversion should de-

crease with system size. The development and implementation of tech-

niques such as those used here is therefore recommended.

6
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APPENDIX II.A

2 2(-l____ __ __

(1 aI
2n 2 - 23/

{1+r +(z-Z)

dcacosna C1+rcoso) [1-ika /1+r2 (-2 2i+loa xfk f~ +z.)2VlCcsx

f0+ t-- Cosa) 3/2

where

2 -2
=2r/tl+r +(z-z)

a13= __ 2____l __ dcicosncaexp{ika r++(z+L/2a /+ 2colc
al(L2 221F~oc

3n f

4n 2-2 2 3/2
{r +r +(z+L/2a)}

f ducosna [1-ikar2 4r2+(z-tL/2a) /1T+E coseti e4k {ikari +r+(zi-L/2a)2 o

22

where
2 22 2

=2rr/[r +r +(z+L/2a)

7T+r +(-/a +E CosL

n(1 d'..cosna expfikar 2 2

r r + (z-L/2a)
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TABLE IV.2

STRUCTURAL AND ACOUSTIC WAVENUMBERS, AND REQUIRED SYSTEM SIZE

f(Hz) k a(z.188V~f M(>- *k a) ka(zf/1000)
f IT f

20 .84 6 .02

50 1.32 9.3 .05

100 1.88 13.2 .1

200 2.66 18.6 .2

500 4.20 29.4 .5

1000 5.95 41.6 1.

2000 8.41 59.0 2.

5000 13.30 93.0 5.
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TABLE IV.l

CYLINDER STRUCTURAL PARAMETERS

Cylinder length 230"

Shell thickness .3125" (Aluminum) S

Shell radius 10.344"

Caps' thickness 1.5" (Steel)

No. of frames 4 (Aluminum)

Inter-frame spacing 46"

Frame height 1.0625"

Frame width 3.25"

Assumed Loss factor for all structures .05

9.. -
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Figure iv.la,b From Ref. 40; Top and Side views of a Typical AL Interframe

cylinder section of the Experimental Model (AL=46" in Fig. IV.2)
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where "det" denotes the determinant of the matrix in Eq. II.B-4.

(2) Modal Impedances for Ring Frames

.28
Modal impedances Z etc., have been given Harari 2  in dimensional

form and relate net frame forces to frame displacements rather than velocities.
The relationship between Harari's "impedance" ZH and our normalized quantity

The ~~~~~~~nilanounomlzdqnty
Z is
nil

H

Znil ka Zni

and similarly for the rest. Thus they are given by

i(Pf/P) (C /c)V'l-ilf

f Pf n S 1 ns S k 1 2
nilS S2 to.

f 12S 2S 2

nS S nnSl-

221S n2  1+ - _ :'-I-.
3 2 2) S 22 f ) 2

i(Pf/P) (c /c)/l-ilf 2

Pf 2 2n.-".

Z n33 =  Qf bSlS n 1 i + -- S 2- (s 2n 3  
'i "f

i(Pf/P) (c /c) Vl-if-
nbSln 1 - n2S( I2s2) +L (S2 f)2]

where b is the frame width as defined in Fig. II.2, which also shows Sl,S2;P f D-

is the frame material density, Cpf its compressional wave speed, and nf its:"[ ''!:
structural loss factor; also,

f= (wa/Cp)//1-iifI

f P

In the above equations all spatial quantities appear normalized by the shell

radius a. " ' "
65-"" "

-f

f"i<
stutua los fatr .also,
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-l+v (ma
* 22 L

'A V(-
3 L

A 4 A2

2 2 2 1-v mrra 2
A5 {n 2 L

.A =-n[lI-2 {n 2 2- i
*6 L

A 7=A3

A8 A6

C

A9 Q 2__6 -la 2(- + n22
9 L

where

Q (wa/c /iY
p

c =shell compressional wave speed;
p

* = structural loss factor; and

=(h/a)/14i2

The constants Bi, B, B, B9 are given by

B, 59 6 8
1 det

A A -A A
2 6 3 5

B
(3 det

A A - A A
4 8 5 7

B=
7 det

B9 1
9det
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APPENDIX IILB

(1) Structural Operators and Constants

The thin-shell theory operators L.,L in Eqs. II.B-la are given

* by (Refs. 34, and 12).0

D22
1l 2 2 32

a2
L 2 2 azDp

L =L
4 2

L (-\) (+B2) -+ 2) (1 +
5 2 az2 a2

7 3

L = L
7 6

2/ __L_

4 2 4 24
az a D

The constants A 1~* A 9in Eq. II.B-4 are,

2
2 m~a 1-\ 2

A, Q 2- -- )n
1 L2
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a3 1 2 ( nf

6n tr2 -r 2 +(z-L/2a) 2 13/2

f dccosnca(1-ikav/r +r2+( z-L/2a) .'1+tC osa]1 exp fika r+r 4(z--L/2a)2 /1+E 3Cosa)

0 fl 3Coa3/

- 22 2
3=2rr/[r +r +(z-L/2a)

L/2a 1

(2) 1 m 7 f dz sin a L z/2a) -(z+L/2a) fdr r [a3 I(n ;r1l)

-L/2a 0

-'() 1 1 rL/2adzsnma- [ 2  ;1

C f drrf i -ff(z+L/2a) [a ( rl~
nm 27TJ L 12n'1

0 -L/2a

a(3 -- a dr r Ir r V 31( z=-L/2a)J
n -2i JT 6i '3

0 0

D13 _r ik f rfaI (E ;z=-L/2a)]
*n IT f 0 n

1 1

-'(4)r r k dr rfaI (E ;z=+L/2a)]
D 2- dr La 3n 2
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TABLE IV. 3

COMPUTATIONAL TIME COMPARISON BETWEEN EXACT AND ITERATED SOLUTIONS VS. S

ITERATION COUNTERS 1",, K2  .

Solution # K K Execution Time % Time Savings
1 2 (secs) Over Exact

1 (exact) - - 75.1 0

2 3 3 64.2 14.5

3 3 2 62.3 17.0

4 3 1 62.0 17.4

5 2 3 60.9 18.9

6 1 1 58.9 21.6 S
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